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Abstract 
 

Heavy tails play an important role in modern macroeconomics and international economics. 
Previous work often assumes a Pareto distribution for firm size, typically with a shape 
parameter approaching Zipf’s law. This convenient approximation has dramatic consequences 
for the importance of large firms in the economy. But we show that a lognormal distribution, or 
better yet, a convolution of a lognormal and a non-Zipf Pareto distribution, provides a better 
description of the U.S. economy, using confidential Census Bureau data. These findings hold 
even far in the upper tail and suggest heterogeneous firm models should more systematically 
explore deviations from Zipf’s law. 
 
Keyword:  Firm size distribution, TFP distribution, Lognormal, Pareto, Zipf’s law, Granularity 
 
JEL Classification: L11, E24 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*

 
 

* This paper was previously circulated as, “On the U.S. Firm and Establishment Size Distributions”. We thank Robert 
L. Axtell, Tim Dunne, Emmanuel Farhi, Andrew Figura, Doireann Fitzgerald, Xavier Gabaix, Colin Hottman, Erzo G.J. 
Luttmer, Erick Sager, Francis E. Warnock, and Chen Yeh for helpful comments and suggestions. We also thank 
seminar participants at the Federal Reserve Bank of Philadelphia, CEF 2018, IAAE 2018, NASMES 2018, CAED 2019, 
and RIDGE IT/GDM 2020 for their comments. Michael Kister provided excellent research assistance. Finally, we 
thank Foster, Grim and Haltiwanger for kindly sharing the TFP data from Foster et al. (2016). The views expressed 
here should not be interpreted as reflecting the views of the Federal Reserve Board of Governors, the Federal 
Reserve Bank of Minneapolis, or any other person associated with the Federal Reserve System. Any opinions and 
conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. 
Census Bureau. All results have been reviewed to ensure that no confidential information is disclosed. Census 
Disclosure Avoidance Officers have approved the release of these statistics under FSRDC project FB01287. 



1 Introduction

Rich micro heterogeneity has become a key feature of modern macroeconomics. Important ques-
tions concerning growth, innovation, financial frictions, trade policy, misallocation, and monetary
policy have been successfully explored using insights from heterogeneous firm models. The size
distribution of firms and its determinants implicitly shape the source and magnitude of aggregate
effects in these models. The size distribution of firms has therefore become a central observable
outcome that these models aim to match or explain.

Using the Longitudinal Business Database, a confidential U.S. Census Bureau panel dataset
of all non-farm private firms and establishments with at least one employee, we document several
important facts about the U.S. firm and establishment employment size distributions. Statistically,
we find that a lognormal fits the firm size distribution better than a Pareto. This finding holds even
when we consider most cuts of the truncated upper tail of the firm size distribution: the Pareto
distribution provides a better fit of the right tail for only a narrow range, and the far right tail is still
better described by lognormal. These results overturn the best available evidence for the United
States from Axtell (2001), the key reference in the literature.

Both lognormal and Pareto distributions, however, do not fit the entire size distribution well.
We therefore move beyond these simple distributions and estimate the parameters of a combina-
tion of lognormal and Pareto: a convolution of a Pareto random variable multiplied by a lognormal
random variable. Perhaps not surprisingly, we find that the convolution beats the fit of the Pareto or
lognormal distributions alone. Moreover, when we consider a second criterion of the distribution
fit—the fraction of employment accounted for by various bins of establishment or firm size—the
convolution provides a markedly better fit. Economically, the convolution can arise in a hetero-
geneous firm model with two sources of firm-level shock, say a demand shock and a productivity
shock. Using manufacturing TFP data, we show that the empirical distribution is well described
by a straightforward lognormal distribution; this implies that lognormal TFP plus another source
of heterogeneity with a Pareto distribution would be appropriate, especially when modeling man-
ufacturing firms.1 Combined, these results imply that the common Zipf’s law assumption for firm
size is not an innocuous model of heavy tails in the macroeconomics of growth, granularity, and
misallocation.

For instance, models in growth theory such as Luttmer (2011) or Arkolakis (2016) explicitly
aim to rationalize a stationary distribution with a tail that is close to Zipf’s law.2 We show that, even

1We also estimate the parameters of a statistical mixture of lognormal and Pareto. Even though we find that the
mixture provides the best overall fit, the convolution also beats the fit of the Pareto or lognormal distributions alone.
More importantly, the convolution provides a markedly better fit for the employment share distribution.

2Rossi-Hansberg and Wright (2007) offer an alternative growth theory in which thinner-than-Zipf size distribu-
tions and scale-dependence arise from random growth and industry-specific human capital accumulation. Therefore, to
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far in the upper tail, the lognormal can be a good approximation of the size distribution of firms.
More importantly, these theories clarify how the stochastic properties of idiosyncratic shocks to
firm dynamics pin down the tail properties of the limit firm size distribution. For example, in the
canonical growth model that uses Brownian shocks to capital to generate Zipf’s law for firm sizes,
the tail index is a closed form function of the stochastic process linear drift, its variance, and the
capital depreciation rate. In this context, we find a lack of stability of the truncated Pareto tail
index, which suggests that the Pareto approximation may prove problematic for the robustness
of quantitative applications. In contrast, we show the convolution of a lognormal and a Pareto
distribution to be an even better approximation.3 Together, we view these results as suggestive
evidence that models with multiple sources of firm heterogeneity are a more promising direction
to flexibly generate heavy-tailed distributions other than Zipf’s law.

Similarly, the Zipf’s law assumption plays a crucial role in the macroeconomics of granular
economies. When an economy is dominated by large firms, idiosyncratic shocks to these firms may
be an important source of aggregate fluctuations, depending on the heaviness of the right tail of
the distribution (Gabaix 2011, di Giovanni and Levchenko 2012, Stella 2015). This insight shapes
the results of Gaubert and Itskhoki (2020), who argue that Pareto-driven granularity is critical
for matching the concentration of firm-level exports within and across sectors in France. While
Gaubert and Itskhoki (2020) estimate an economy-wide Pareto shape parameter that is slightly
thinner than Zipf (around 1.1), they also report a substantial fraction of sectors having heavier-
than-Zipf sector-level Pareto estimates. Yet, the widespread OLS-based method used to estimate
these Pareto shape parameters is flawed as it can suffer from a severe downward bias. We show
that estimating a convolution can avoid such implausibly low Pareto shape parameters. Our results
suggest that granularity would likely play a smaller role in determining comparative advantage in
their framework.

The shape of the firm size distribution affects the welfare gains from reducing trade costs and
the source of those gains. di Giovanni and Levchenko (2013) show that in a canonical heteroge-
neous firm model, as the firm size distribution approaches Zipf, welfare gains from typical trade
liberalizations rise, but these gains come nearly entirely from the intensive margin, the change in
trade flows from existing exporters. In this world, some firms with a productivity above which
firms choose to export are very large; reductions in tariffs or transport costs affect these large firms
directly, with large changes in trade flows. In addition, in a Zipf world, reductions in fixed or
sunk costs of exporting have minimal welfare gains; marginal exporters that make up the extensive
margin are too small to be economically consequential. Our results imply that the U.S. economy

contrast the role of physical capital intensity, we report our size distribution estimation results for both manufacturing
and services in Appendix C.

3See Nair et al. (2013) for an excellent primer on the mathematics and the estimation of alternative heavy-tailed
phenomena.
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is significantly away from Zipf’s law and provide greater scope for the extensive margin to play a
significant role in trade dynamics and the gains from trade.4

International trade models with a Pareto firm size distribution also struggle to simultaneously
match direct estimates of the firm size distribution and other important moments of firm hetero-
geneity, such as the exporter size premium. Exporters tend to be about 4.5 times larger than non-
exporters, but Armenter and Koren (2015) show that the shape parameter implied by the exporter
size premium in the data would be about 1.65. If U.S. firms were near Zipf (with a shape param-
eter of 1.065), these models would imply that the average exporter would be 41 times larger than
the average non-exporter. A second source of heterogeneity, such as heterogeneous fixed costs, is
required to rationalize both the direct distributional estimate with the exporter size premium.

Other papers in the international trade literature have also explored the implications of devi-
ations from Zipf’s law and the Pareto distribution using, for example, a lognormal, a Truncated
Pareto, or multidimensional sources of firm heterogeneity. Adão et al. (2020) review the different
distributional assumptions that are common in the literature and document size differences in key
elasticities governing the gains from trade. Head et al. (2014) examine the consequences of a log-
normal distribution in trade. Nigai (2017) shows that the combination of a Pareto right tail and a
lognormal left tail not only provides a better empirical fit but also generates sizeable differences
in the gains from trade. Sager and Timoshenko (2017) argue that the Double Exponentially Modi-
fied Gaussian provides a better fit of export data with quantitative implications for trade elasticity
estimates. And Fernandes et al. (2015) propose to model the firm productivity distribution with a
lognormal distribution to match the empirical evidence on the importance of the intensive margin
of trade.

The rest of the paper is organized as follows. Section 2 introduces the data we use in the paper.
Section 3 explains the parametric distributions that we fit to the data. Section 4 presents our main
results on the employment size distributions and analyzes the TFP establishment distribution in
manufacturing. Section 5 concludes.

2 Data Description

The Center for Economic Studies at the U.S. Census Bureau created and maintains a longitudinally-
linked establishment-level database: the Longitudinal Business Database (LBD). The LBD covers
the non-farm private economy of establishments with at least one employee. The wide coverage of
the LBD comes at a cost, as it only provides number of employees, payroll, location, firm ID, and

4di Giovanni et al. (2011) show how international trade outcomes affect estimates of the firm size distribution
through the lens of standard trade models.
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sectoral affiliation of each establishment; we do not observe revenues, intermediate inputs, capital
investment, prices or other important information. See Jarmin and Miranda (2002) for additional
details on the LBD. Table 1 shows the number of establishments and firms we use in each year.
2012 was the latest available Census year, and we chose 10-year intervals based on that, with the
addition of 1997 for comparability to Axtell (2001).

Table 1: Number of observations

Year Est. Firm

1982 4,490,000 3,620,000
1992 5,580,000 4,390,000
1997 6,060,000 4,770,000
2002 6,290,000 4,900,000
2012 6,590,000 4,980,000

Note: Numbers are rounded.
Source: LBD.

The LBD establishment is defined as a single physical location where business is conducted;
this definition is not equivalent to the IRS Establishment Identification Number (EIN), which might
be comprised of more than one LBD establishment. The LBD establishment is also not equivalent
to a legal entity; the LBD includes a firm ID variable that groups together establishments owned
by the same firm.5

In most of this paper, we measure the size of an establishment or firm with its number of em-
ployees. The analysis is conducted on the whole universe, but in Appendix C we also consider two
subsamples: manufacturing and services, where the latter excludes retail, wholesale and FIRE.6

The LBD covers nearly the entire U.S. business population, but only provides us with lim-
ited information. Census surveys on manufacturing establishments include much richer detail
on their operation. Foster et al. (2016) estimate Total Factor Productivity (TFP)—specifically,
establishment-level revenue total factor productivity—with data from the quinquennial Census of
Manufactures (CM). Since the distribution of productivity shocks represents an important primitive
assumption in many theories, we extend our analysis to the distribution of TFP of manufacturing
establishments, discussed in Section 4.4. Table 2 shows the number of establishments and firms in

5The LBD firm ID was created using information from the quinquennial Economic Census and the annual Com-
pany Organization Survey. The Company Organization Survey is only submitted to large firms and a subset of small
firms, so the firm ID is not entirely reliable outside of Census years; this does not affect our results as we only use
Census years in our analysis.

6We define the manufacturing sector as all establishments with two-digit SIC codes ∈ [20,40) for years 1982,
1992, and 1997. For 2002 and 2012, we define manufacturing as establishments with two-digit NAICS codes ∈
[31,33]. The services sector is defined as all two-digit SIC codes ∈ [70,90) and two-digit NAICS codes ∈ [54,81]
and 51 for the same years. We assign firms to the sector where most of its employees work. FIRE stands for Finance,
Insurance and Real Estate.

4



the services and manufacturing sectors as well as the number of establishments in the TFP dataset,
which does not include 2012. Note that services make up the vast majority of the establishments
and firms in the LBD and thus contribute a greater share to the distribution calculations for the
universe of establishments and firms. Also note that the TFP data is available for roughly half of
manufacturing establishments.

Table 2: Number of observations by sector

Services Manufacturing

Year Est. Firm Est. Firm TFP est.

1982 1,430,000 1,280,000 330,000 270,000 190,000

1992 2,000,000 1,730,000 350,000 290,000 190,000

1997 2,240,000 1,920,000 360,000 300,000 210,000

2002 3,070,000 2,500,000 330,000 280,000 180,000

2012 3,440,000 2,760,000 280,000 230,000

Note: Numbers are rounded. Sources: LBD for employment and Foster
et al. (2016) for TFP.

Since the U.S. Census Bureau prefers researchers not to disclose too many tabulations of the
raw data, we use the Business Dynamic Statistics (BDS) to complement the statistics we disclosed
and produce some of the charts and tables in the paper. The BDS are publicly available on the
U.S. Census Bureau’s website and are drawn from the same underlying data that we use for our
analysis. All of our distribution estimates, however, are obtained using the underlying confidential
LBD.

3 Parametric Distributions and Estimation Methods

Motivated by the existing literature, we fit four parametric distributions to the data. The first and
most popular distribution is Pareto. Axtell (2001) provides the benchmark evidence that the em-
ployment and sales firm size distributions in the U.S. are well approximated by a Pareto close to
Zipf’s law. As a consequence, along with analytical tractability, Pareto is widely used in hetero-
geneous firm models that assume an exogenous distribution, and much of the endogenous growth
literature focuses on generating a Pareto distribution. The CDF of a Pareto with scale parameter
xm and shape parameter α is:

FP(x) = 1−
(xm

x

)α

, (1)
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with xm > 0 and α > 0. For this type of Pareto distribution, the mean is α

α−1xm for α > 1 and the
variance is α

(α−1)2(α−2)x2
m for α > 2. When α ≤ 2, the variance is undefined, and when α ≤ 1, the

mean and variance are undefined.7 These properties are especially important given the range of
shape parameter estimates we find in the data.

The lognormal distribution has frequently been considered as a possible alternative to the Pareto
distribution. The log of a lognormal random variable follows a normal distribution. The CDF of a
lognormal with parameters µ and σ is:

FL(x) = Φ
(

lnx−µ

σ

)
(2)

with µ ∈ (−∞,∞), σ > 0, and where Φ(x) is the CDF at x of a standard normal distribution. For
the lognormal distribution, the mean is given by eµ+σ2/2 and the variance (eσ2−1)e2µ+σ2

.
Besides the two most popular parametric distributions in the literature, we consider two distri-

butions that parsimoniously combine Pareto and lognormal with the hope to provide a better fit.
One is a pure statistical mixture of the two distributions and the other a convolution of the two
distributions.

Specifically, the CDF FM of the mixture of a Pareto and a lognormal using a mixing parameter
p is:

FM(x) = pFL(x)+ (1− p)FP(x), (3)

where FL is the CDF of a lognormal with parameters µ and σ and FP is the CDF of a Pareto with
scale parameter xm and shape parameter α .

Finally, we define the convolution as the product of a Pareto random variable with CDF FP and
a lognormal random variable with CDF FL. Equivalently, the log of such convolution is the sum of
a normal distribution and an exponential distribution.8 Thus, the CDF of the convolution is:

FC(lnx) = Φ(α(x−µ);0,ασ)− e−α(x−µ)+ (ασ)2
2 Φ(α(x−µ); (ασ)2,ασ), (4)

where Φ(x; µ ,σ) is the CDF at x of a normal distribution with parameters µ and σ .
Most of the previous literature on the firm size distribution evaluated the fit of the Pareto dis-

7Despite the mean and variance being undefined, Pareto is not degenerate when α < 1. However, the employment
share distribution implied by a Pareto with shape parameter below one does become degenerate when the mean is
undefined, as we show in Table 9. If a distribution mixes any Pareto with a shape parameter below one, some incredibly
large firms would be generated in reasonably sized samples, leaving too many employees belonging to the largest bin
of firms.

8See Reed (2001) for an example of stochastic growth processes that can yield such distribution. Sager and
Timoshenko (2017) also rationalize this distribution using a model with Pareto productivity shocks and lognormal
demand shocks.
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tribution using regression analysis on binned data (Axtell 2001, Gabaix 2009). It has been widely
documented in both the statistics and econometrics literature that regression analysis is not well
suited to test the goodness of fit of a Pareto distribution.9 Since we are estimating parametric mod-
els with a known and simple likelihood, we use maximum likelihood estimation for its excellent
statistical properties, and the likelihood of a parametric distribution model is a simple function of
its PDF.10 To determine which distribution best fits the data, we rely on formal statistical testing.

For nested models, we use the popular likelihood ratio test. If L1 is the maximum likelihood
of a model, L0 is the maximum likelihood of a reduced version of the model, and k is difference
between number of parameters, then Λ =−2ln(L0

L1
) is asymptotically distributed according to χ2

k .
For non-nested models, we use a test developed by Vuong (1989). This test is a function of the

likelihood ratio test: Λ̃ = n
1
2 Λ

ωn
, where f is the model in the numerator of the ratio, g the model in

the denominator, and ωn is the empirical counterpart of the asymptotic variance of the likelihood
ratio statistic Λ. Under the null hypothesis H0 that the two models are equivalent, Λ̃ D−→ N(0,1);
under the first alternative H f that model f is better, Λ̃ a.s−→ ∞; finally, under the second alternative
Hg that model g is better, Λ̃ a.s−→−∞. We also use the Akaike information criterion (AIC), which
has the attractive feature of penalizing models with a higher number of parameters.

Our preferred measure of establishment and firm size, the number of employees, is discrete,
whereas all the distributions we described so far have a continuous support. We follow Buddana
and Kozubowski (2015) and discretize the distributions. In particular, if F(·) is the CDF of a
continuous distribution, the PMF of the discretized distribution is defined as Pr(X = n) ≡ F(n+

1)−F(n). In other words, the continuous distribution is discretized by creating a bin for each
integer value.

Finally, our data includes only establishments and firms with at least one employee, but the
lognormal and convolution have support starting at zero; to make the estimation possible, we shift
the lognormal to the right by one unit, along with the lognormal components of the mixture and
the convolution.

9Clauset et al. (2009) discuss this issue in detail and also provide a Monte Carlo simulation to show that the
lognormal distribution can approximate a Pareto closely when evaluated with the regression analysis approach used in
Axtell (2001) and Gabaix (2009). See also Eeckhout (2009).

10We ran Monte Carlo simulations to investigate the accuracy of the MLE in estimating our models and found it to
be reliable. Results are in Appendix A.2.
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4 Employment Distribution Results in the United States

In this section, we highlight two stylized facts that emerge from the U.S. firm and establishment
employment distributions in the census years 1982, 1992, 1997, 2002, and 2012.11 We use data
from the LBD, except for Section 4.4, which uses TFP data from the Census of Manufactures.

4.1 Lognormal versus Pareto

Stylized Fact 1 A lognormal fits both establishment and firm size employment distributions better

than the commonly used Pareto, even far in the truncated upper tail.

Table 3 shows the maximum likelihood estimates of the lognormal and Pareto distributions
using the entire sample of establishments and firms. Both the Vuong test and AIC find that the
lognormal distribution is preferred over Pareto for establishments and firms in all years, while the
best-fitting Pareto consistently has a shape parameter significantly below one, around 0.6. These
parameters are all tightly estimated, with standard errors and test statistics available upon request.

Table 3: Pareto and lognormal estimates using the entire sample

Pareto Lognormal

α µ σ

Year Est. Firm Est. Firm Est. Firm

1982 0.57 0.61 1.38 1.21 1.52 1.81

1992 0.56 0.61 1.40 1.21 1.53 1.71

1997 0.56 0.61 1.41 1.17 1.56 1.74

2002 0.55 0.60 1.44 1.15 1.57 1.80

2012 0.56 0.62 1.37 1.14 1.61 1.80

Figure 1 provides a graphical representation of the fit of the parametric distributions with 1997
binned data. It depicts the Complementary Cumulative Distribution Function (CCDF) in log space:
for each logarithm of s number of employees, it shows how many firms are larger than s. The black
circles represent binned data; distributions with fits above the black circles represent too many large
firms compared to the data, while distributions with fits below the black circles have too few large
firms relative to the data.

11To capture long-run trends we use 10-year intervals starting with 1982. We add 1997 for comparison to Axtell
(2001).
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Figure 1: Data vs. Estimated Distributions
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Note: The black circles are computed using the number of observations
in the last column of Table 4, and the lines depict the CCDF implied by
the estimated parametric distributions.

Our estimate of the Pareto shape parameter (the dot-dashed line) fits the left tail but implies far
too many large firms. Notably, the Axtell Pareto fit (the dashed line) with shape parameter 1.06
remains below the data, but, overall, it matches the slope of the black circles excluding the left
tail, which is essentially by design of the regression-based estimation procedure on binned data.
The lognormal fit is reasonable through about e5 ≈ 150 employees but produces too few very large
firms. Nonetheless, its excellent fit in the left tail and the middle of the distribution underpins its
better overall fit, compared to Pareto, using MLE.

As Figure 1 shows, in the log-log space of the CCDF, the curvature of the data cannot be
matched by the straightness of a Pareto distribution. In other words, a Pareto distribution cannot
fit the entire firm size distribution, including the left tail. Axtell’s Pareto distribution essentially
never touches the data, though it has a similar slope as the right tail of the data distribution. MLE
reasonably tries to fit as much data as possible by flattening the Pareto line to fit the left tail, where
most firms are. For this reason, MLE finds a Pareto shape parameter lower than one to be a better
fit than Axtell’s estimate. A shape parameter lower than one is not plausible, but it should not be
viewed as evidence against MLE. Instead, it is evidence against a Pareto distribution.

In summary, Pareto fails at fitting the entire employment distribution, while lognormal does
well in the left tail and middle of the empirical distribution, but fails in the right tail, when using
the parameter estimates from the whole distribution. We investigate the right tail of the distribution
next, but the results on the entire distribution are important, as many leading theories assume
a Pareto distribution for the entire employment distribution and not just the right tail. Section
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4.2 considers a mixture and a convolution of Pareto and lognormal that both fit well the entire
distribution and not just a part of it.

Right Tail Estimates While the lognormal distribution might be a better fit overall, only the
upper tail is the relevant portion of the distribution for some economic questions. Table 4 presents
the parameter estimates for a Pareto distribution and a truncated lognormal distribution at various
employment thresholds for the 1997 firm size distribution.12 Using the BDS, we calculated the
share of total U.S. employment that is accounted for by the firms above some of the thresholds in
Table 4: firms with at least 5 employees account for 87.8% of employment, firms with at least 50
employees account for 69.5%, firms with at least 100 employees account for 62.0%, firms with at
least 500 employees account for 47.7%, firms with at least 1,000 employees account for 42.6%,
firms with at least 5,000 employees account for 35.5%, and firms with at least 10,000 employees
still account for 24.7% of total employment. Thus, fitting the right tail of the distribution can still
fit a large fraction of U.S. employment.

Table 4: Pareto and lognormal in the firm size right tail

Pareto lognormal

Threshold α µ σ N (rounded)

2 0.76 -0.02 1.93 3,750,000

5 0.97 -5.88 3.11 2,150,000

10 1.05 -14.97 4.26 1,160,000

25 1.11 -14.79 4.22 450,000

50 1.12 -16.44 4.46 210,000

100 1.10 -19.10 4.85 95,000

200 1.05 -22.01 5.28 43,000

300 1.02 -23.80 5.56 28,000

400 1.01 -24.73 5.72 20,000

500 1.01 -21.29 5.40 16,000

1,000 1.01 -5.32 3.73 8,100

2,500 1.05 1.99 2.68 3,300

5,000 1.11 5.70 2.00 1,600

10,000 1.23 7.21 1.66 800

Notes: The estimates are reported using the 1997 firm size sample in order to en-
sure consistency and comparability with Axtell (2001), the main benchmark in
the literature.

12Estimates for the other Census years are available upon request. The main results in this paper are robust over
time.
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In Table 4, the Pareto shape parameter tends to increase with the upper tail threshold. At
various thresholds the shape parameter is in fact near one, corresponding to Zipf’s law. Note,
however, that Zipf’s law draws its power from the thickness of the right tail, and at the highest
thresholds of 5,000 and 10,000, the shape parameter is increasingly above one. Indeed, the lack of
stability of the shape parameter estimates across cutoffs suggests that the underlying distribution
is not Pareto: a true Pareto distribution would have shape parameter estimates that are invariant to
the cutoff or, at least, more stable further in the upper tail.13

Figure 2: Data vs. Estimated Distributions Above 100 Employees
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Note: The black circles are computed using the number of observations
in the last column of Table 4, and the lines depict the CCDF implied by
the estimated parametric distributions.

Does the Pareto Provide a Better Fit? In Figure 2, we show the fit of the parametric distribu-
tions when truncating firms below 100 employees. In contrast to Figure 1, the fit of each distribu-
tion is much closer to each other and to the few available data bins. Nonetheless, in Table 5, we use
the Vuong statistic to formally test which distribution has a better fit for each truncation threshold,
using all available confidential data from the LBD.

The lognormal provides the best fit both when the threshold is at or below 10 employees and
when the threshold is at or above 400 employees. For a threshold of 300 employees, neither

13The well-known Hill plot for visually identifying power-law distributions is based on this stability argument. The
lognormal distribution does not have the same property: if a sample is drawn from lognormal, estimating a truncated
lognormal on a truncated sample would not deliver the same coefficients as on the whole sample. Some theories of the
size distribution such as Reed (2001) and Arkolakis (2016) generate a double Pareto size distribution as opposed to
the simple Pareto distribution we consider. Note that, even in that case, the distribution should follow a simple Pareto
distribution in the upper tail.
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distribution is preferred. Thus, the lognormal fit typically dominates the Pareto fit even far in the
upper tail, except in a narrow truncation window.

Table 5: Pareto vs lognormal (Vuong statistic)

Threshold Vuong statistic P-value Winner

2 -223.6 0.00 lognormal

5 -58.4 0.00 lognormal

10 -11.3 0.00 lognormal

25 18.3 0.00 Pareto

50 22.4 0.00 Pareto

100 18.4 0.00 Pareto

200 6.4 0.00 Pareto

300 1.0 0.32 None

400 -2.0 0.05 lognormal

500 -3.2 0.00 lognormal

1000 -3.3 0.00 lognormal

2500 -3.3 0.00 lognormal

5000 -3.4 0.00 lognormal

10000 -2.7 0.01 lognormal

Figure 3: Data vs. Estimated Distributions Above 500 Employees
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Note: The black circles are computed using the number of observations
in the last column of Table 4, and the lines depict the CCDF implied by
the estimated parametric distributions.
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While it is commonly assumed that the Pareto distribution can provide a better fit of the right
tail, Figure 3, which shows firms with more than 500 employees, makes clear that the lognormal
distribution can fit these data well. In Section 4.3, we show how despite this apparently similar
fit, the distinction between lognormal and Pareto remains a crucial one for the importance of gran-
ularity. Intuitively, this can be seen by extending Figure 3 further into the right tail, beyond the
available data bins, in which Pareto produces far more extremely large firms. We show this in
Figure 5 in the appendix.

Revisiting the Zipf’s Law Evidence How can these results be reconciled with those of Axtell
(2001)? Using a popular methodology, Axtell explores the fit of a Pareto distribution by running
a regression of the logarithm of the frequency distribution on the logarithm of (binned) firm size.
Axtell (2001, p. 1820) concludes: “the Zipf distribution is an unambiguous target that any empir-

ically accurate theory of the firm must hit.”

How well a line fits the log frequency plot is often interpreted as evidence of the fit of the Pareto
distribution. As extensively explained by Clauset et al. (2009) and Eeckhout (2009), this method
is ill-suited to determine how well the Pareto fits, as it generates significant systematic errors.14

Moreover, Axtell (2001) computes the frequency distribution using successive bins of increas-
ing size in powers of three. This approach yields only 13 data points and the regression estimation
on such a binned sample effectively gives more weight to the observations in the right tail.

We first replicated the Axtell (2001) procedure to ensure that differences in our results were
not due to the underlying sample used. Axtell (2001) also uses the underlying data which became
the LBD. In his regressions, the slope was 2.059 with a standard deviation of 0.054, which implies
a Pareto shape parameter at 1.059. Our replication of his linear regression with our data produced
a slope of 2.057 with a standard deviation of 0.039, which implies that the differences in results
are not due to the underlying data, but to the methodologies used.

Visual inspection of Figure 1 from Axtell (2001, p. 1819) also provides some intuition for the
difference in results. Axtell’s first and last bins are both below the regression line. To fit the first
bin, which contains a large portion of our sample, would require a shallower slope, or a Pareto
shape parameter below one. To fit the last bin, containing the largest firms, would require a steeper
slope, or a Pareto shape parameter above the 1.06 that Axtell found. This is consistent with the
larger shape parameter for the far right tail in Table 4.

14In Appendix A.1, we further analyze the ability of the Axtell (2001) regression approach to recover the true
parameters of a Pareto distribution and other distributions. By design, the regression approach yields a power law
shape parameter. The parameter estimated on the full (non-binned) data has a bias towards Zipf’s law when the true
distribution is not Pareto.
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Discussion Overall, the evidence in this section indicates that the lognormal typically provides a
better fit than the Pareto, even in the truncated right tail of the firm size distribution. In the binned
right tail, the best-fitting lognormal may look quite similar to the best-fitting Pareto.

Does this mean that, despite the better statistical fit of a lognormal, these different distributions
are interchangeable in economic models? Existing models suggest the two distributions are not
equivalent in their implications or origins. Moreover, if for a given model the two distributions
yield different results, then it must be that the nature of the left tail of the distribution or its right
tail is important.

We think that, when the analytical convenience of the Pareto distribution or exact scale invari-
ance is not a theoretical requirement, quantitative practitioners should be careful about choosing
the Pareto distribution over the lognormal distribution, even far in the right tail.15 This means that
Pareto in general, whether our estimate or Axtell’s, is likely not the more appropriate choice for
most economic contexts. In Section 4.3, we illustrate opposite implications of these seemingly
interchangeable distributions in one such context: Gabaix (2011)’s study of aggregate fluctuations
arising from idiosyncratic shocks to very large firms in economies with a finite set of firms, or
“granular” economies.

4.2 Mixture and Convolution Distributions

We have so far compared how the Pareto and lognormal distributions fit the firm and establishment
size distributions. It is evident from Figure 1 that neither fits the entire distribution well. Lognormal
can provide a good fit of the left tail and middle of the distribution, at the cost of missing the right
tail. Both distributions are shown in Figures 2 and 3 to be able to fit the right tail, as long as the rest
of the distribution is ignored. However, recent papers have shown that for some economic theories
the fit of the distribution outside of the right tail can be consequential. For this reason, we explore
the fit of a statistical mixture of lognormal and Pareto as well as a convolution of a Pareto random
variable multiplied by a lognormal random variable.

Stylized Fact 2 Both the mixture and the convolution of lognormal and Pareto distributions fit

the size distributions better than lognormal alone. Statistically, a mixture provides the best size

distribution fit, but economically, the convolution may be more suitable given its better employment

share distribution fit.

Mixture Estimates Table 6 provides the parameter estimates for the statistical mixture distribu-
tion of a lognormal and a Pareto. The parameters µ ,σ , and α have the same meanings as before

15Typically, the analytical tractability of the Pareto distribution come from its scale invariance, in the sense that the
distribution is invariant to truncation of the left tail. See Rossi-Hansberg and Wright (2007) for related discussions on
the apparent scale dependence of both the establishment size distribution and the firm size distribution.
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(see Section 3). Now we also estimate xm, the minimum of the Pareto distribution. This approach
effectively means that the Pareto distribution is allowed to work on an endogenously chosen cutoff
of the right tail of the distribution. In practice, this is approximately 3 employees and stable across
both firms and establishments.

The mixture also has the mixing p parameter, specifying the degree to which the estimated
distribution is lognormal. For both establishments and firms, this lognormal mixing parameter p

is about 0.8 to 0.9, without much meaningful difference between establishments and firms across
years. If anything, the distribution appears to be getting more lognormal over time, especially for
establishments.

Comparing the estimates between Tables 3 and 6, the Pareto shape parameter is systematically
higher in the mixture. This is consistent with the estimates of the right tail in Table 4. Since the
scale parameter xm ≈ 3, the mixture is mixing in a Pareto only above this threshold, analogous to
the truncated estimations. This result also shows that the estimation did not favor a higher threshold
xm yielding a Pareto component closer to Zipf’s law (see Table 4). Over time, the estimated Pareto
shape parameters also appear to be slightly declining for firms, but not for establishments.

Table 6: Parameter Estimates - Mixture

µ σ p xm α

Year Est. Firm Est. Firm Est. Firm Est. Firm Est. Firm

1982 1.18 1.02 1.50 1.43 0.83 0.86 3.39 3.37 0.80 0.75

1992 1.22 1.00 1.53 1.45 0.84 0.85 3.55 3.48 0.85 0.76

1997 1.25 1.00 1.58 1.49 0.86 0.86 3.57 3.47 0.85 0.74

2002 1.32 1.07 1.57 1.48 0.89 0.89 3.55 3.35 0.80 0.69

2012 1.24 0.97 1.60 1.52 0.91 0.89 4.47 3.62 0.83 0.68

Convolution Estimates The parameter estimates for the convolution of a lognormal and Pareto
distribution are shown in Table 7. The lognormal µ and σ parameters are systematically lower than
their mixture counterparts, while most notably, the Pareto shape parameter α is higher, and always
well above 1, a point that we discuss later in the contexts of the employment share distribution and
granularity.
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Table 7: Parameter Estimates - Convolution

µ σ α

Year Est. Firm Est. Firm Est. Firm

1982 0.62 0.44 1.27 1.23 1.29 1.26

1992 0.70 0.45 1.32 1.26 1.39 1.26

1997 0.72 0.43 1.37 1.29 1.43 1.25

2002 0.76 0.44 1.39 1.28 1.46 1.23

2012 0.75 0.34 1.46 1.33 1.58 1.22

A lower shape parameter α for firms, relative to establishments, means that the right tail firm
size is thicker than the establishment size right tail. The mixture also has a lower Pareto shape
parameter for firms than establishments, but since both are below one, both distributions are eco-
nomically implausible.16

The parameter estimates remain reasonably stable over time. If anything, the distribution ap-
pears to embed a more dispersed lognormal component over time, especially for establishments.
The Pareto component for the establishment size distribution also appears to have a slightly less-
heavy tail and it is becoming less heavy over time, while the tail of the Pareto component for the
firm size distribution, though slightly declining, is more stable over time.

Testing the Four Models With estimates for four distributions in hand, we formally test which
distribution fits the data best. Pareto and lognormal are both nested in a mixture and can therefore
be tested with the likelihood ratio test. For non-nested models, we use the test developed by Vuong
(1989) described earlier. For the 6 paired tests (testing each of 4 distributions against each other),
the rankings are consistent across years and between establishments and firms: A mixture is always
the most preferred distribution and a convolution the second most preferred. Test statistics and p-
values are in Table 15 in Appendix B. As an alternative, we also computed the AIC for all the
distributions and find identical rankings.17

While the statistical ranking is clear, it does not provide any feel for the nature of the fit. For
this, we turn to a tabulation of the 1997 BDS and data simulated using the parameter estimates
in Tables 3 to 7. The first column of Table 8 shows the employment size categories provided by
the BDS; the second column shows the tabulation of the U.S. firms by size in 1997: for instance,

16The Pareto estimated on the entire sample actually has a lower shape parameter on establishments than firms.
Since more flexible distributions show a thicker tail for firms, this further emphasizes the importance of using these
more flexible distributions. See also Rossi-Hansberg and Wright (2007, figure 1 on p. 1649) for related empirical
evidence and a model of larger deviations from Zipf’s law in the size distribution of establishments compared to the
firm size distribution.

17The values of the AIC statistics are available upon request.
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54.8% of firms have between 1 and 4 employees. Starting from the third column, we show the
tabulation of simulated data.

Table 8 clearly indicates that the Pareto with the shape parameter from Axtell (2001) provides a
poor fit of the U.S. firm size distribution. Even the Pareto with our estimate of the shape parameter,
the fourth column, does not fit the data well, putting too much weight on the left and right tails.
Lognormal provides a better fit than the Pareto distributions, but its right tail is too thin as shown
by the last two bins. Finally, the mixture and convolution both provide a very good fit of the U.S.
firm size distribution.

Table 8: Tabulation of 1997 BDS data and simulated data

BDS Axtell Pareto Lognormal Mixture Convolution

1 to 4 54.8 81.8 62.4 54.9 55.0 55.8

5 to 9 21.2 9.4 12.9 17.3 20.4 19.4

10 to 19 12.2 4.5 8.5 12.4 12.5 12.3

20 to 49 7.5 2.6 6.9 9.5 7.9 8.0

50 to 99 2.3 0.8 3.2 3.5 2.3 2.6

100 to 249 1.2 0.5 2.6 1.8 1.1 1.3

250 to 499 0.4 0.2 1.2 0.4 0.3 0.4

500 to 999 0.2 0.1 0.8 0.1 0.2 0.2

≥ 1,000 0.2 0.1 1.5 0.0 0.2 0.1

Note: The first column shows the BDS employment brackets. The second column shows the

share of firms within each bracket in the BDS. The third to last columns show the share of firms

within each bracket in simulated data drawn from parametric distributions.

Figure 4 depicts the implied CCDF in log space. It confirms that the mixture and convolution
appear to provide an improved fit. The convolution also has a slightly too-thin tail, while the
mixture has a slightly too-thick tail. Still, by this criterion, both handily outperform the lognormal
and Pareto distributions alone.

Implications for Employment Shares In Table 9, we take a completely different cut of the data:
the fraction of overall employment accounted for by firms in each bin.18 Since these data moments
are not explicitly targeted in the estimation, we can use them as an “out-of-sample" test of the fit
of the estimated distributions. The second column shows, for example, that firms with 20 to 49
employees account for 10.6 percent of overall employment in the economy. Here, Axtell’s estimate
of Pareto with a shape parameter of 1.06 fits the data somewhat better in absolute terms for each

18See Appendix B for confidence bands and a description of how this table was constructed.
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bin. Notably, however, too much employment is accounted for by very small firms (11.6 percent
versus 5.7 percent in the data for firms with 1 to 4 employees) and very large firms (36.6 percent
versus 24.7 percent for firms with more than 10,000 employees).

Table 9: Fraction of 1997 firm employment

BDS Axtell Pareto Lognormal Mixture Convolution

1 to 4 5.65 11.56 0.00 7.04 0.46 6.57

5 to 9 6.53 5.44 0.00 7.52 0.53 7.15

10 to 19 7.73 5.41 0.00 11.06 0.67 9.27

20 to 49 10.62 6.95 0.00 19.07 0.94 13.57

50 to 99 7.52 5.06 0.00 15.56 0.64 9.81

100 to 249 8.72 6.40 0.01 17.99 0.68 11.23

250 to 499 5.54 4.63 0.01 9.76 0.44 7.06

500 to 999 5.09 4.45 0.01 6.18 0.44 5.95

1,000 to 2,499 7.07 5.61 0.02 4.00 0.66 6.44

2,500 to 4,999 5.4 4.04 0.02 1.18 0.61 3.98

5,000 to 9,999 5.46 3.88 0.03 0.44 0.72 3.35

≥ 10,000 24.68 36.58 99.90 0.19 93.19 15.64

Note: The first column shows the BDS employment brackets. The second column shows the

employment share of firms within each bracket in the BDS. The third to last columns show the

employment share of firms within each bracket in simulated data drawn from parametric distri-

butions.

But this table also makes clear the odd results of a Pareto distribution or mixture containing
a Pareto with a shape parameter below one. Simulating such distributions eventually generate
some very large firms, whose employment completely dominates the economy. The lognormal,
as expected from Figure 4, generates too few large firms of too small a size. However, for most
bins, the relative employment accounted for in each bin is comparable to the data (that is, the ratio
of any two rows excluding the large firm sizes). Notably, by this metric, the convolution fits the
data remarkably well. The left tail has a bit too much of total employment and the right tail has too
little, but we show in Appendix B that in Monte Carlo simulations, the convolution is quite capable
of reproducing the values we observe in the BDS.

So far, we estimated the size distributions using the entire U.S. population of firms and estab-
lishments. Over the past few decades, the U.S. economy has been going through a deep structural
transformation that shifted employment away from manufacturing and towards the services sec-
tors. So we estimate the distributions of manufacturing and services sub-samples and find notably
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Figure 4: Data vs. Estimated Distributions
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Note: The black circles are computed using the number of observations
in the last column of Table 4, and the lines depict the CCDF implied by
the estimated parametric distributions.

different distribution estimates between them. Still, the Pareto is strictly dominated by the other
three distributions, with the same overall ranking of mixture first, then convolution, then lognor-
mal, and Pareto fitting least well. While the services sector tends to have estimates close to the
overall distribution (unsurprising given that much of the overall distribution consists of our services
sub-sample), the manufacturing estimates are characterized by even lower Pareto shape parame-
ters. In a mixture, the Pareto shape parameter remains well below one for manufacturing firms,
but is not as stable for manufacturing establishments. Both manufacturing lognormal parameters
µ and σ tend to be higher than their services counterparts. And as with the results for all establish-
ments and firms, the convolution yields sensible parameter estimates that can be included tractably
in models. Detailed results are shown in Appendix C.

4.3 Some Quantitative Implications in Granular Economies

In this section, we highlight some quantitative implications for aggregate volatility in granular
economies that sharply distinguish the distributions. This example illustrates a simple macroe-
conomic context in which distributional assumptions matter, and motivates the relevance of our
estimates for macroeconomic models with cross-sectional firm heterogeneity.

Gabaix (2011) provides a useful framework to emphasize the potential of large firms to gen-
erate sizable aggregate shocks in a “granular” economy. He focuses on a Pareto distribution as
it approaches Zipf’s law, and shows that idiosyncratic shocks can be a more important source of
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aggregate volatility under Zipf’s law, compared to a lognormal.
In this section, we quantify the contribution of idiosyncratic shocks to aggregate volatility

for each estimated distribution; these visually similar distributions have vastly different aggregate
volatility properties. Consider an economy with N firms, each of which experience multiplicative
shocks with fixed variance σ2 to their size. Gabaix (2011) shows that aggregate volatility declines
quickly with more firms (higher N) in many cases, but that as the firm size distribution approaches
Zipf’s law, aggregate volatility declines more slowly. Quantitatively, he calculates that with a firm
volatility of σ = 12% and a Zipf distribution of firm sizes, GDP volatility is about 1.4%.

We replicate this quantitative exercise using our 1997 estimates for the firm size distribution;
we simulated 100,000 samples taking 106 draws from several distributions, including Zipf, Axtell’s
Pareto, and our parametric distributions.19 We computed the GDP volatility for each simulation
and we show the means in Table 10.

Table 10: Calibration of Aggregate Volatility under Granularity

Zipf’s law Axtell’s Pareto Pareto Lognormal Mixture Convolution

1.43% 0.99% 6.63% 0.05% 4.59% 0.38%

Note: We took 100,000 times 106 draws from each distribution, computed the aggregate volatility us-
ing equation (8), and took the mean. Zipf’s law is a Pareto with shape parameter equal to 1. Axtell’s
Pareto is a Pareto with shape parameter equal to 1.057. Pareto, lognormal, mixture and convolution are
parametrized using our 1997 estimates for the firm size distribution from Tables 3, 6, and 7.

Gabaix compares his calibration with a U.S. aggregate volatility of 1.7% and makes the point
that, with firms distributed according to Zipf’s law or Axtell’s Pareto, idiosyncratic shocks can
explain a significant portion of aggregate volatility. Our estimates point at a different and more
extreme picture: with a Pareto shape parameter below one idiosyncratic shocks do not cancel out
in the aggregate, producing too much aggregate volatility. In the model shown in Appendix D,
we formally prove this unappealing economic implication of going past Zipf’s law, with a shape
parameter below one, and contrast it to the implications of a lognormal distribution.20 When firms
are lognormally distributed, the law of large numbers always kicks in and idiosyncratic shocks
cancel out in the aggregate. Finally, the convolution–our preferred estimated distribution–allows
for idiosyncratic shocks to matter in the aggregate, but with a much more diminished role compared
to Zipf’s law. These results are in line with Stella (2015) and Yeh (2018), which also find a more
limited contribution of firm-level shocks to aggregate volatility than Gabaix (2011).21

19Gabaix (2011) chose N=106 because it is in the same order of magnitude as the number of firms in the U.S.
economy as reported by the LBD, Table 1.

20See Appendix D for model details.
21The values in Table 10 should be taken as upper bounds, as the calibration assumes that all firms have the same
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4.4 Manufacturing TFP

Stylized Fact 3 The distribution of establishment-level total factor productivity is also better de-

scribed by lognormal than Pareto.

Modern macroeconomic models prominently feature firm heterogeneity and therefore require
assumptions on the distribution of productivity shocks. In particular, the analytical tractability of
the Pareto distribution and its apparent good fit to the data have made it a common assumption. For
instance, in their influential paper on gains from trade in new trade models, Arkolakis et al. (2012)
assume Pareto. In standard monopolistic competition models, the firm size distribution reflects the
productivity distribution, but given selection, demand functions, and potentially many sources of
shocks, this is not always the case. Mrazova et al. (2017) characterize how the analytical properties
of the demand function critically shape the implied distribution of sales and output using standard
distributions for productivity such as lognormal or Pareto.22

Therefore, in this section, we focus directly on estimates of the TFP distribution available for
the U.S. manufacturing sector. We use the TFPR measures as estimated for establishments in the
Census of Manufactures. Our distribution estimates are only for the years 1982, 1992, 1997, and
2002 because these TFPR measures estimated by Foster et al. (2016) were not available for 2012
at the time of our study.

Table 11 shows the results of the maximum likelihood estimation of the four parametric distri-
butions we consider. Starting with the Pareto shape parameter fit in the top sub-panel, the estimate
averages a paltry 0.13, inheriting all of the economic issues inherent with an α below one. The
second sub-panel provides the lognormal fit, which remains remarkably consistent across time.
The mixture estimates again show a very high proportion p of lognormal, 0.93 on average. The
lognormal parameters µ and σ are similar to the estimates from the lognormal alone, while the
shape parameter is well above 1 in all years. This is in contrast to the Pareto shape parameter
of the mixture for the employment size distributions, which were below one. Those lognormal
parameters remain fairly similar in the convolution, with a high Pareto shape α averaging 3.4.

Using the likelihood-based statistical tests, we find that generally, the mixture distribution out-
performs lognormal, but, in 2002, the convolution outperforms both the mixture and lognormal,
with the mixture still providing a better fit than the lognormal alone. The rankings are statistically
significant typically at well beyond a 1 percent level. Our results are consistent with the evidence
provided by Combes et al. (2012) and Nigai (2017) using French data.

volatility. Declining volatility with firm size can significantly diminish the aggregate impact of idiosyncratic shocks.
Yeh (2018) estimates the size-variance relationship in the LBD, and uses it to recalibrate the contribution of firm-level
idiosyncratic shocks to aggregate fluctuations.

22 Jones (2020) proposes an alternative growth model in which productivity draws from a Pareto distribution are
not essential for generating exponential growth: combinatorially large samples from a thin-tailed distribution can yield
exponential growth.
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Table 11: Manufacturing establishment TFP

Year xm α p µ σ

Pareto

1982 0.11

1992 0.14

1997 0.12

2002 0.15

Average 0.13

Lognormal

1982 1.86 0.57

1992 1.90 0.54

1997 1.93 0.54

2002 1.97 0.57

Average 1.92 0.56

Mixture

1982 3.68 1.59 0.87 1.85 0.56

1992 4.75 1.52 0.88 1.86 0.51

1997 19.65 1.83 0.98 1.90 0.50

2002 19.49 1.71 0.97 1.92 0.49

Average 11.89 1.67 0.93 1.88 0.52

Convolution

1982 4.00 1.61 0.51

1992 3.44 1.61 0.45

1997 3.57 1.65 0.46

2002 2.75 1.61 0.43

Average 3.44 1.62 0.46

Note: The scale parameter xm is not reported for the case of the sim-
ple Pareto due to Census disclosure restrictions. TFPR measures of
TFP were constructed by Foster et al. (2016) using the Census of
Manufactures.

Altogether, the data strongly suggest that Pareto provides a poor fit and that lognormal is a more
reasonable distribution for TFP than Pareto. Moreover, the parameter estimates for the lognormal
distribution are remarkably similar between the standalone lognormal and its combinations with a
Pareto. In contrast, such stability does not hold for the Pareto shape parameter estimates across the
various estimated distributions. These findings suggest that given only one source of heterogeneity
for TFP, a lognormal TFP distribution is more reasonable than Pareto. In addition, using Pareto-
distributed demand shocks, this interpretation is consistent with our preferred distribution for the
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overall employment size distribution: a convolution of lognormal and Pareto.

5 Conclusion

In this paper, we use confidential microdata from the U.S. Census and maximum likelihood es-
timation to precisely characterize the U.S. firm and establishment size distributions, as measured
by the number of employees and, for manufacturing, TFP. We establish three stylized facts about
these distributions and provide guidance for researchers in parameterizing models that include firm
heterogeneity.

The commonly-used Pareto distribution does not provide a better fit for the size distribution of
U.S. establishments or firms compared to the lognormal distribution, its less popular alternative. In
fact, the lognormal distribution even fits better most truncations of the right tail. For these reasons,
we argue that if a single simple distribution is required, the lognormal is a better approximation of
the size distribution of firms and establishments than Pareto.

The firm and establishment size distributions are much better approximated with a combination
of a lognormal distribution and a Pareto distribution. We find the convolution of a lognormal and a
Pareto provides a much better fit along with a much-better match to the employment share distri-
bution. While the mixture has the best statistical fit, its Pareto shape parameter below one implies
that it inherits the unappealing characteristics of the Pareto distribution in that range. Thus, when
evaluating distribution fit by the fraction of employment accounted for by firms of each size, the
convolution provides a clearly superior fit to the mixture. As such, the convolution provides a more
suitable choice economically for use in other applications. It can also be generated in a reason-
able way as the product of a Pareto-distributed random variable and a lognormally distributed one;
thus, models incorporating both productivity shocks and taste shocks could easily generate such a
distribution.

Finally, we make use of manufacturing TFP estimates to consider the distribution of this deeper
source of firm heterogeneity. We find that the better fit of lognormal relative to Pareto is, if any-
thing, even greater for TFP than for employment size. Given only one source of heterogeneity,
lognormal TFP draws are more reasonable than Pareto. Adding a second source of heterogeneity
with Pareto-distributed draws would further help fit the overall employment size distribution.

Aside from providing guidance for calibrating models with exogenously defined firm hetero-
geneity, our results also highlight that future models of endogenous growth should rationalize
appreciable deviations from straight Pareto size distributions, including in the upper tail.
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A Monte Carlo experiments

A.1 Axtell’s OLS Regression Analysis on Binned Data

To investigate the performance of Axtell’s methodology to determine the fit of a Pareto distribution,
we generated 250,000 synthetic datasets for each of the following parametric distributions: Pareto,
lognormal, mixture and convolution with our parameter estimates obtained with 1997 Census data,
and Pareto with Axtell’s estimated parameter (1.06). We then implemented Axtell’s methodology
to estimate the Pareto shape parameter on each of the four sets of 250,000 synthetic datasets.23

Table 12: Axtell’s regression analysis on synthetic data

Axtell’s Pareto Pareto Lognormal Mixture Convolution

True α 1.06 0.61 0.74 1.25

α̂ 1.05 0.61 1.37 0.81 1.12

c.i. (1.00, 1.10) (0.58,0.63) (1.24,1.45) (0.77,0.85) (1.08,1.16)

N 4,770,000 4,770,000 4,770,000 4,770,000 4,770,000

Num. sim. 250,000 250,000 250,000 250,000 250,000

Note: α̂ is the mean of the distribution of OLS coefficients for each synthetic dataset. c.i. is the 95% confidence interval. N is the
number of observations. Each simulation is run with 4,770,000 observations, which is the number of firms in 1997 according to the
BDS.

Table 12 shows that Axtell’s methodology is able to correctly uncover the Pareto shape pa-
rameter when the data is drawn from a Pareto. However, Axtell’s methodology produces a shape
parameter close to but above one even when data is drawn from a convolution with our estimated
parameters. In other words, if the true firm size distribution were to be drawn from a convolution,
Axtell’s methodology would incorrectly find empirical support for Zipf’s law.

A.2 MLE simulations

We now investigate the performance of Maximum Likelihood Estimation in estimating the param-
eters of the distributions of interest. We drew 1 million observations from the Pareto, lognormal,
mixture and convolution using our estimated 1997 coefficients as true parameters.24 We discretized
the data and then estimated the parameters using the same MLE procedure used in the paper. Fi-
nally, we computed the distance between the true parameters and the estimated parameters, and

23Axtell (2001) explains in "References and Notes" 30 how he implements the regression in Figure 1.
24We used a million observations because using the number of observations in the 1997 LBD was not computa-

tionally feasible for this exercise.
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the pair-wise likelihood ratio tests among all the distributions. We repeated this exercise 250 times
for each distribution.

Table 13: RMSEs

Pareto Lognormal Mixture Convolution

µ 1.17 1.00 0.49

RMSEs 0.00 0.34 0.00

σ 1.74 1.49 1.29

RMSEs 0.00 0.14 0.00

p 0.86

RMSEs 0.08

α 0.61 3.47 1.25

RMSEs 0.06 0.13 0.01

xm 0.74

RMSEs 0.15

N 1,000,000 1,000,000 1,000,000 1,000,000

Num. sim. 250 250 250 250

Note: For each distribution, we show the 1997 estimated coefficients and the RMSEs from the simu-
lation. N is the number of observations in each simulation.

Table 14: Likelihood-based ratio tests

True: Pareto Lognormal Mixture Convolution

Alternative:

Pareto 100.0% 97.6% 100.0%

lognormal 96.8% 97.6% 100.0%

Mixture 33.2% 0.0% 100.0%

Convolution 70.0% 1.6% 97.2%

N 1,000,000 1,000,000 1,000,000 1,000,000

Num. sim. 250 250 250 250

Note: For each distribution, we show the percentage of times that the likelihood-ratio test correctly picks
the true distribution. The LRT test is used between mixture and Pareto and between mixture and log-
normal. The Vuong test is used for all other pairs. N is the number of observations in each simulation.

Table 13 shows the Root Mean Squared Errors (RMSEs) computed using the distances between
the true parameters and their MLE estimates in the 250 simulations; the errors made by MLE are
for the most part very small. Table 14 presents the percentage of times that the likelihood-based
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ratio tests with 95% confidence were able to pick the correct distribution, with the true distribution
shown in the column header and the alternative distribution shown in the first column. The tests
are able to almost always pick the correct distribution when the true distributions are mixture and
convolution, and when testing between lognormal and Pareto. The tests have a harder time when
the alternative distribution is a more flexible version of the true distribution, as the former has more
coefficients and is able to approximate the latter. For instance, if the true distribution is Pareto and
the alternative is mixture, the mixture can perfectly approximate a Pareto by having its mixture
parameter p equal to zero, which makes it very hard for the likelihood-ratio test to distinguish
between them.

Table 14 is hard to read, so consider a specific example. The first column shows the results
of the tests when the sample is drawn from a Pareto distribution; the likelihood-based ratio tests
correctly pick Pareto over lognormal 96.8% of the time; as explained earlier. The tests are not as
good in distinguishing between Pareto and the more flexible mixture and convolution: the tests
correctly pick Pareto only 33.2% of the samples when a mixture distribution is used as the alter-
native, and 70% when a convolution is the alternative. However, when the sample is drawn from
Pareto, mixture and convolution are estimated to be very similar to Pareto, whereas the parameters
of mixture and convolution estimated with Census data are not such that the two distributions look
like either a straight Pareto or a straight lognormal. For this reason, it is unlikely that the weakness
of likelihood-based tests in distinguishing nested or quasi-nested models applies to our empirical
results.

A.3 Test Statistics for Best Fitting Distribution

Table 15 presents the values of the likelihood-based test statistics used to determine which para-
metric distribution fits the data best in Section 4.2.

Table 15: Likelihood-based tests

f /g: Mixture Convolution Lognormal

Convolution 45.5
0.00

Lognormal 76,445.5 181.6
0.00 0.00

Pareto 425,545.2 493.8 495.8
0.00 0.00 0.00

Notes: The row distributions are the models in the numerator of the ratio, f ; the column distributions
are the models in the denominator of the ratio, g. The first row for each pair shows either the LR test for
nested models or the Vuong test for non-nested models; the second row shows the p-value.
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B Additional Empirical Results

B.1 Visualizing the Estimated Upper Tails

We extended Figure 3 by increasing the number of observations drawn from the truncated para-
metric distributions so as to have enough observations in the largest bins. Figure 5 shows that the
Pareto distributions produce a larger share of far more extremely large firms than the estimated
truncated lognormal.

Figure 5: Estimated Distributions Above 500 Employees
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B.2 Confidence Intervals for Implied Employment Shares

In Table 16, we show the 95% confidence intervals for Table 9, obtained by drawing 4.77 million
firms (as in the 1997 LBD) 100,000 times from each each distribution with the parameter values
we estimate.

Here we see that for the Axtell calibration, the fraction of firms accounted for by the largest and
smallest bins has a large variance, though the confidence intervals include the true data values. The
lognormal distribution is much more consistently simulated across draws, with its thinner right tail.
Our Pareto estimate with a shape parameter below one and the mixture, also incorporating a Pareto
estimate with a shape parameter below one, consistently draws massive firms which account for
nearly all of employment.

Finally, the confidence bands for the convolution are fairly economically narrow but often
include the true value, including both the small firm bin and the largest firm bin.
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Table 16: Fraction of 1997 firm employment: 95% confidence intervals

BDS Axtell Pareto lognormal Mixture Convolution

1 to 4 5.65 (5.22,13.95) (0.00,0.01) (7.01,7.07) (0.01,1.10) (5.43,6.97)

5 to 9 6.53 (2.46,6.56) (0.00,0.01) (7.49,7.56) (0.02,1.27) (5.91,7.58)

10 to 19 7.73 (2.44,6.52) (0.00,0.01) (11.01,11.11) (0.02,1.59) (7.66,9.83)

20 to 49 10.62 (3.14,8.39) (0.00,0.01) (18.98,19.15) (0.03,2.24) (11.22,14.39)

50 to 99 7.52 (2.28,6.11) (0.00,0.02) (15.48,15.65) (0.02,1.52) (8.11,10.40)

100 to 249 8.72 (2.89,7.73) (0.00,0.03) (17.87,18.12) (0.02,1.63) (9.28,11.91)

250 to 499 5.54 (2.09,5.60) (0.00,0.03) (9.63,9.89) (0.01,1.05) (5.83,7.50)

500 to 999 5.09 (2.00,5.39) (0.00,0.04) (6.04,6.32) (0.01,1.05) (4.91,6.34)

1,000 to 2,499 7.07 (2.53,6.82) (0.00,0.07) (3.83,4.17) (0.02,1.58) (5.31,6.90)

2,500 to 4,999 5.40 (1.82,4.99) (0.00,0.07) (1.03,1.32) (0.02,1.44) (3.27,4.36)

5,000 to 9,999 5.46 (1.74,4.88) (0.00,0.09) (0.32,0.57) (0.02,1.73) (2.73,3.76)

≥ 10,000 24.68 (23.48,71.39) (99.62,100.00) (0.07,0.35) (83.80,99.79) (10.61,30.27)
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C Manufacturing versus Services

The employment size distributions in Section 4 were estimated using the entire U.S. population of
firms and establishments. Over the past few decades, the U.S. economy has been going through
a deep structural transformation that shifted employment away from manufacturing and towards
the services sectors. In this appendix, we examine manufacturing and services separately. We find
that the manufacturing and services sectors have notably different distribution estimates, but the
distribution fit ranking is the same as in the aggregate data.

Table 17: Manufacturing vs Services

Fraction of employment Average firm size

Year Manufacturing Services Manufacturing Services

1977 29.2% 22.9% 74.3 13.5

1982 25.6% 25.9% 70.3 15.0

1987 21.7% 29.9% 64.2 16.1

1992 19.7% 33.0% 61.2 17.4

1997 17.9% 35.1% 61.3 18.8

2002 14.5% 37.9% 57.6 20.7

2007 12.3% 40.1% 55.1 20.5

2012 10.6% 42.9% 51.8 20.9

Source: BDS and authors’ calculations. The second and third columns show the fraction of total employment in manu-
facturing and services, respectively; the fourth and fifth columns show the average employment size of manufacturing and
services firms, respectively. The definition of manufacturing and services is in Section 2.

As shown in Table 17, the employment weight of manufacturing declined substantially over
the period considered in this paper, whereas that of services almost doubled. Moreover, Table 17
shows substantial compositional differences between these two sectors, as the average firm size
has been roughly three and a half times as large in manufacturing than in services, although the
gap has been closing over time.

Given the evidence on structural change in the U.S. economy and the significant differences
among sectors, it is surprising that there is little evidence on the sectoral size distributions. In this
appendix, we want to fill this gap in the literature by estimating the parametric distributions over
time on two subsamples: manufacturing and services, where the latter excludes retail, wholesale
and FIRE.

Pareto and Lognormal Estimates Table 18 presents the estimates for the lognormal distribution
by sector. Focusing on the average line, manufacturing establishments have both a larger µ and σ
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than services establishments, implying both a greater fitted mean and variance. A similar pattern
holds for manufacturing firms relative to services firms.

Table 19 presents the Pareto shape parameter α by sector. Notably, manufacturing establish-
ments and firms have an α even lower than for all firms, averaging about 0.4 compared to services’
0.6. These results suggest that in models focusing on manufacturing firms, such as standard mod-
els in international trade, the fit of a Pareto distribution on the overall empirical distribution is not
more sensible than a lognormal.

Over time, both the mean and the variance of the estimated lognormal appear to be increasing
for firms and establishments in the services sector, but not so much in the manufacturing sector.

Table 18: Lognormal by sector

Manufacturing Services

Year µ σ µ σ

Establishments

1982 2.42 1.75 1.09 1.50

1992 2.32 1.76 1.21 1.53

1997 2.34 1.77 1.23 1.58

2002 2.21 1.75 1.43 1.60

2012 2.13 1.77 1.40 1.64

Average 2.28 1.76 1.27 1.57

Firms

1982 2.13 1.65 1.01 1.48

1992 2.05 1.69 1.11 1.54

1997 2.08 1.71 1.09 1.60

2002 1.98 1.68 1.25 1.60

2012 1.90 1.72 1.20 1.63

Average 2.03 1.69 1.13 1.57
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Table 19: Pareto α by sector

Establishments Firms

Year Manufacturing Services Manufacturing Services

1982 0.38 0.65 0.42 0.67

1992 0.39 0.61 0.43 0.64

1997 0.39 0.60 0.43 0.64

2002 0.41 0.55 0.44 0.60

2012 0.42 0.55 0.45 0.60

Average 0.40 0.59 0.44 0.63

Mixture Estimates Table 20 reports the estimates for the mixture distribution by sector. The
lognormal parameters remain remarkably similar to those from estimating lognormal alone, but
there are notable differences in the Pareto shape parameter.

Table 20: Mixture by sector

Manufacturing Services

Year µ σ p xm α µ σ p xm α

Establishments

1992 2.32 1.79 0.94 3.66 0.88 0.89 1.43 0.79 3.50 0.78

1997 2.34 1.80 0.96 4.49 1.12 0.96 1.51 0.81 3.51 0.77

2002 2.22 1.78 0.95 3.50 1.01 1.34 1.59 0.92 3.56 0.76

2012 2.13 1.79 0.98 4.48 1.96 1.29 1.63 0.92 4.48 0.81

Average 2.25 1.79 0.96 4.03 1.24 1.12 1.54 0.86 3.76 0.78

Firms

1992 1.90 1.63 0.88 4.48 0.59 0.74 1.35 0.78 3.49 0.78

1997 1.94 1.66 0.89 4.52 0.58 0.77 1.41 0.80 3.50 0.76

2002 1.85 1.62 0.90 4.53 0.57 1.06 1.48 0.87 3.48 0.71

2012 1.76 1.66 0.90 4.41 0.58 1.00 1.52 0.89 4.36 0.71

Average 1.86 1.64 0.89 4.49 0.58 0.89 1.44 0.83 3.71 0.74

Note: 1982 not reported as estimates have unusually large standard errors.

Starting with manufacturing establishments, the Pareto scale parameter, xm, is estimated to take
effect around 4 employees and the Pareto shape parameter, α , is estimated to be a reasonable 1.24,
but the mixing parameter p = 0.96 suggests that the manufacturing establishment size distribution
is almost entirely lognormal. By contrast, the establishment size distribution in the services sector
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is somewhat less lognormal with p = 0.86 on average, but the corresponding Pareto shape param-
eter remains robustly below one. Manufacturing firms have a lower mix of lognormal (p = 0.89)
but, unlike manufacturing establishments, feature a low Pareto shape parameter below one. The
contrast seems less pronounced in the services sector: estimates for the size distribution of firms
and establishments are quite similar.

The estimated parameters are relatively stable ovetime. The estimated distributions appear to
be getting more lognormal over time, especially in the services sector. The estimated Pareto shape
parameters also appear to be relatively stable and below one, except for manufacturing establish-
ments.

Convolution Estimates Finally, Table 21 shows the sectoral parameter estimates for the con-
volution distribution. As with the previous distributions, manufacturing establishments and firms
have much higher estimates of mean µ and standard deviation σ than their services counterparts.
The Pareto shape parameter is well above 1 for all subsamples, which further suggests that the
convolution yields reasonable parameter estimates and is a solid candidate for use in calibrated
models.

Over time, for establishments in both sectors, there is a steady rise in the shape parameter α of
the Pareto component. Consequently, there is a growing deviation from Zipf’s law for establish-
ments, especially in manufacturing, where the shape parameter is estimated to be above 2 since
1997. In contrast, the shape parameter of the convolution’s Pareto component is much more sta-
ble and closer to 1 for firms in the manufacturing sector. The firm size distribution in services,
however, features a slight upward trend in the Pareto shape parameter estimate.

These results are largely consistent with the findings in the aggregate sample. These findings
also suggest that the manufacturing sector, unlike services, has experienced different dynamics at
the firm level, relative to the establishments that comprise these firms.
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Table 21: Convolution by sector

Manufacturing Services

µ σ α µ σ α

Establishments

1982 1.75 1.61 1.49 0.27 1.16 1.17

1992 1.75 1.66 1.75 0.40 1.23 1.20

1997 1.91 1.72 2.31 0.43 1.30 1.22

2002 1.73 1.68 2.08 0.80 1.44 1.55

2012 1.78 1.73 2.89 0.84 1.52 1.76

Average 1.78 1.68 2.10 0.55 1.33 1.38

Firms

1982 1.26 1.37 1.15 0.19 1.12 1.16

1992 1.18 1.41 1.14 0.26 1.18 1.15

1997 1.22 1.45 1.16 0.26 1.23 1.16

2002 1.15 1.42 1.19 0.46 1.29 1.23

2012 1.04 1.45 1.15 0.43 1.37 1.27

Average 1.17 1.42 1.16 0.32 1.24 1.19

Visual Representations Figure 6 shows a graphical representation of the fit of the parametric
distributions of manufacturing with 1997 BDS data. Like the previous figures, it depicts the com-
plementary cumulative distribution function in log space. Again, distributions above the black
circles represent too many large firms compared to the data. Here we note that the convolution and
mixture continue to fit the overall shape of the CCDF well, while our Pareto estimate generates far
too many large firms. The lognormal distribution fits the left tail and middle of the distribution well,
but generates too few large firms. We also plot Axtell’s Pareto estimate of 1.06 for comparison,
and it has a similar fit to the manufacturing distribution as it does for the overall distribution.

In Figure 7, we show the same CCDF plot for services with 1997 BDS data. Relative to
manufacturing, the mixture provides an even better fit across all bins, while lognormal struggles
more with the right tail. Our Pareto estimate remains systematically above the data, while Axtell’s
is below.

Finally, we formally test which distribution fits the data best by sector-year for establishments
and for firms. For both establishments and firms, in both manufacturing and services, and across
all the years 1982, 1992, 1997, 2002, and 2012, the formal statistical tests and the AIC all provide
a consistent ranking of distribution fit: the mixture fits the best, then convolution, then lognormal,
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and last Pareto.25 The rankings are statistically significant at least at a 5 percent level and typically
at a much tighter level.26

Figure 6: BDS Data vs. Estimated Distributions for Manufacturing
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Figure 7: BDS Data vs. Estimated Distributions for Services
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25Detailed results available upon request.
26Our results are not consistent with the findings by Quandt (1966), who estimated the firm size distribution in

several sectors separately. His ranking of distribution fit varies from sector to sector. However, his sample only
included very large firms, and he did not consider the lognormal distribution or mixtures of lognormal and Pareto.
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D Theoretical Appendix

In this section, we show that correctly characterizing the firm size distribution has first-order im-
plications for the effect of firm-level idiosyncratic shocks on aggregate activity, as seemingly in-
nocuous statistical differences can lead to strikingly different economic implications. A Pareto
shape parameter less than one implies an upper tail heavier than Zipf’s law, and therefore leads to
problematic theoretical implications, as the firm size distribution mean would not be well-defined.
We extend the analysis of Gabaix (2011) to illustrate that with a Pareto shape parameter below one,
aggregate volatility does not decrease in the number of firms, thus generating ‘too much’ aggregate
volatility; in the paper we also showed that, if we allow idiosyncratic shocks to be drawn from our
preferred convolution, the granular origins of aggregate fluctuations are significantly diminished.
This theoretical and quantitative example illustrates the importance of accurately characterizing
the size distribution in macroeconomic models

Let `i
t denote the employment at firm i at time t. Aggregate employment is then simply LN,t =

∑
N
i=1 `

i
t , where N denotes the number of firms.27 Consider a set of multiplicative shocks εi,t to the

size of each firm such that εi,t has mean 0 and variance ςi:

∆`i,t+1 ≡ `i,tεi,t+1. (5)

Then the aggregate employment growth rate is simply:

∆LN,t+1

LN,t
=

N

∑
i=1

∆`i,t+1

LN,t
(6)

and aggregate volatility, the variance of aggregate growth is:

σ
2
N,t ≡ vart

[
N

∑
i=1

∆`i,t+1

LN,t

]
=

N

∑
i=1

(
`i,t

LN,t

)2

ς
2
i . (7)

In the symmetric case where ςi = σ ∀i, the Herfindahl index h2
N,t summarizes the aggregation of

idiosyncratic shocks:

σ
2
N,t = σ

2
N

∑
i=1

(
`i,t

LN,t

)2

≡ σ
2h2

N,t . (8)

27For the rest of the theoretical exposition, we use “firm” to denote the individual economic entity.
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The Herfindahl, in turn, can be rewritten as:

h2
N,t =

∑
N
i=1 `

2
i,t(

∑
N
i=1 `i,t

)2 =

(
N−2

∑
N
i=1 `

2
i,t
)(

N−1 ∑
N
i=1 `i,t

)2 = N−1

(
N−1

∑
N
i=1 `

2
i,t
)(

N−1 ∑
N
i=1 `i,t

)2 . (9)

Therefore, when E [`] and E
[
`2] are finite,

h2
N,t×N a.s.−−→

E
[
`2]

(E [`])2 . (10)

Definition 1 Consider a random variable Y , a sequence of random variables ζN , and a sequence

of positive numbers aN . Following Gabaix (2011), a convergence in distribution such that ζN/aN
d−→

Y as N→ ∞ is also denoted ζN ∼ aNY and ζN is said to scale like aN .

Using equation 9 and the scaling definition above, we can characterize the scaling properties
of granular shocks when the moments of the size distribution are finite.

Proposition 1 If the size distribution has finite mean and variance, then the size Herfindahl index

is such that:

h2
N ∼

1
N

(11)

and thus the macro variance σ2
N is decreasing in 1

N .

The proof is a straight application of the law of large numbers and is the same as the proof
of Proposition 1 in Gabaix (2011). Proposition 1 implies that, in terms of the micro origins of
macroeconomic volatility, there is no material difference between a lognormal size distribution
and a Pareto size distribution with shape parameter when α > 2.

However, when the Pareto shape parameter α is equal to or lower than 2, the distribution has
undefined variance, and it has both undefined mean and variance when α is equal to or lower than
1. As we have shown, these are relevant regions of the Pareto parameter space, and so we describe
the behavior of the Herfindahl index in the following proposition which extends Proposition 2 in
Gabaix (2011).

Proposition 2 If firm size is distributed Pareto with shape parameter α , then the size Herfindahl
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index is characterized by:

h2
N(α) ∝



1/N when α > 2

1/
(

N
lnN

)
when α = 2

1/
(

N1− 1
α

)2
when α ∈ (1,2)

1/(lnN)2 when α = 1

1 when α ∈ (0,1)

(12)

and thus, in the case of α < 1, the macro variance σ2
N no longer decays with N for N large enough.

With α > 2, we return to the world of Proposition 1. With a lower shape parameter, aggregate
volatility declines more slowly with N. When α < 1, the upper tail is heavier than Zipf’s law (α =

1) and aggregate volatility does not decline at all with N: the largest firms so disproportionately
dominate that aggregate volatility is the idiosyncratic volatility of these firms. This is a starkly
different context than the better-fitting lognormal, where volatility declines rapidly with N.

Proof: We prove Proposition 2 using Theorem 3.8.2 in Durrett (2017, p. 186-187), which is as
follows:

Theorem 1 Suppose that X1, X2, . . . are i.i.d. with a distribution that satisfies (i) limx→∞ P(X1 >

x)/P(|X1| > x) = θ ∈ [0,1] and (ii) P(|X1| > x) = x−αL(x) with α ∈ (0,2) and L(x) slowly

varying. Let sN = ∑
N
i=1 Xi, aN = in f{x : P(|X1| > x) ≤ 1/N}, and bN = NE[X11|X1|≤aN ]. As

N → ∞, (sN − bN)/aN converges in distribution to a nondegenerate random variable Y. When

α < 1, we can let bN = 0.

Using equations (8) and (9), we can write

σN = σ
(∑N

i=1 `
2
i )

1/2(
∑

N
i=1 `i

) (13)

When α > 2, a Pareto random variable has finite mean and variance, and so we simply apply
Proposition 1. When α = 2, we must apply 1 to the numerator, ∑

N
i=1 `

2
i . Here, aN = N and

bN = N
∫ N

1 y · y−(1+1)dy = N ln(N), and thus:

N−1(
N

∑
i=1

`2
i −N ln(N))

d−→ u,

where u is a random variable following a nondegenerate distribution that does not depend on N.
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Thus:
N

∑
i=1

`2
i ∼ N ln(N).

It follows that:

hN =
(∑N

i=1 `
2
i )

1/2

∑
N
i=1 `i

d−→ (N ln(N))1/2u1/2

NE[`i]
∝

(
ln(N)

N

) 1
2

When 1 < α < 2, we again apply Theorem 1 to determine the numerator in equation 13. Since
li is Pareto distributed with scale parameter equal to 1 and shape parameter equal to α , l2

i is Pareto
distributed with the same scale parameter and shape parameter equal to α

2 . Since α < 2, α

2 < 1 and
bN = 0.

P(`2 > x) = P(` > x1/2) = (x1/2)−α = x−α/2,

which implies that aN = N2/α . With aN and bN we apply Theorem 1:

N−2/α
N

∑
i=1

`2
i

d−→ u,

It follows that

hN =
(∑N

i=1 `
2
i )

1/2

∑
N
i=1 `i

d−→ N1/αu1/2

NE[`i]
=

u1/2

N1− 1
α E[`i]

∝ 1/N1− 1
α

When α = 1, we have to apply Theorem 1 to both the numerator and denominator. For

∑
N
i=1 `

2
i , aN = N2 and bN = 0. For ∑

N
i=1 `i, P(` > x) = x−1 ≤ 1/N implies aN = N; bN =

N
∫ N

1 x · x−(1+1)dx = N ln(N). We then have:

1
N
(

N

∑
i=1

`i−N ln(N))
d−→ g,

where g is random variable following a nondegenerate distribution that does not depend on N. This
implies that

N

∑
i=1

`i ∼ N ln(N).

hN =
(∑N

i=1 `
2
i )

1/2

∑
N
i=1 `i

∼ N
N ln(N)

∝ 1/ ln(N)

Finally, when 0 < α < 1, aN = N
1
α and bN = 0 for ∑

N
i=1 `i, and aN = N

2
α and bN = 0 for

∑
N
i=1 `

2
i . This implies

N

∑
i=1

`i ∼ N1/α ,
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and
N

∑
i=1

`2
i ∼ N1/α ,

and thus,

hN =
(∑N

i=1 `
2
i )

1/2

∑
N
i=1 `i

∼ N1/α

N1/α
∝ 1.
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